
Schlumberger public

Parallelizing Ocean plug-in computations using 

the Background Worker + PFX pattern

Dmitriy Repin
Program Architect, Schlumberger PTS

Ocean Development Framework User Meeting

Houston, October 24, 2014



Schlumberger public

© 2014 Schlumberger. All rights reserved.

An asterisk is used throughout this presentation to denote a mark of 
Schlumberger. Other company, product, and service names are the 
properties of their respective owners.



Schlumberger public

User requirements for a Petrel plug-in

 Deliver the result faster

– Do the work in parallel, I’ve got the cores!

 Stay responsive to user interactions

– Do not freeze the Petrel UI

– Allow me to do something else (e.g., view the data) while 

the computation proceeds

 Report your progress

 Provide a way to cancel the computation, if needed



Schlumberger public

Petrel ecosystem constraints

 Windows Forms / WPF thread affinity

– Controls can only be used on the main application thread.

– Must use ISynchronizeInvoke.Invoke() to access from other thread

 Most of the Ocean API (with small exceptions, e.g., Seismic 

and StructuralFramework) does not support asynchronous 

access

– Ocean domain objects must be accessed on the main application 

thread

– Petrel does not use locking while accessing objects through UI

– No application-wide deadlock prevention strategy



Schlumberger public

Given the limitations, what is possible?

 Live dangerously: Perform parallel computations in the 

background without locking the data

– Be ready to crush - user can delete/change inputs at any moment

 Freeze conservatively: Spawn threads / tasks from the main 

thread and block it until the computation is complete.
– Good for a short-running operations

– Beware of Application.DoEvents() use for progress reporting!

Use optimistic concurrency:
1)Copy the data to a local buffer 

2)Perform parallel computations in the background using the buffer

3)Copy the result back, if possible

– Good for long-running operations when the computation is more expensive 

than the data/result copy



Schlumberger public

Our original implementation (before Petrel 2014) 

BackgroundWorker + Parallel.For = Usability

 Petrel is alive even with near 100% CPU load

 Provide staged progress reporting
• Step <N> of <L>: <M>% competed

 Provide cooperative cancellation
• It takes some time to stop computation 



Schlumberger public

Optimistic concurrency – activity diagram

Data 
Preparation
Copy the data to a 

local buffer

Background computation

Compute
Work item

Compute
Work item

Compute
Work item

Updating 
Petrel & plug-in UI

Progress reporting
Cancellation

Result 
publishing
Update domain

objects

Main thread

Background thread

Thread pool thread



Schlumberger public

EAP and BackgroundWorker 
 Event-based Asynchronous Pattern from Microsoft 

– Perform an operation asynchronously

– Receive a notification when the operation completes

– Communicate with the operation using events/delegates

– Support for cooperative cancellation and progress reporting

 BackgroundWorker



Schlumberger public

Simplified example of BackgroundWorker
backgroundWorker.RunWorkerAsync(); 
backgroundWorker.CancelAsync(); 

void backgroundWorker_DoWork(object sender, DoWorkEventArgs e) { 
BackgroundWorker worker = sender as BackgroundWorker;

for (int i = 1; i < WorkItemCount; i++) { 
if (worker.CancellationPending == true) { 

e.Cancel = true; break; 
} 
SmoothInline(data, i);
worker.ReportProgress((int)(100.0f*i/WorkItemCount);     

} 
}

void backgroundWorker_ProgressChanged(object sender, ProgressChangedEventArgs e) { 
resultLabel.Text = (e.ProgressPercentage.ToString() + "%"); 

}

void backgroundWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e) 
{ 
if (e.Cancelled == true){ resultLabel.Text = "Canceled!"; } 
else if (e.Error != null){ resultLabel.Text = "Error: " + e.Error.Message; } 
else { resultLabel.Text = "Done!“ + e.Result.ToString(); } 

}  

TODO: Parallelize this



Schlumberger public

System.Threading.Tasks.Parallel.For

 Parallel Extensions for the .NET Framework (PFX) include
– Parallel LINQ or PLINQ

– The System.Threading.Tasks.Parallel class

– The System.Threading.Tasks.Task parallelism constructs

– The concurrent collections

 Parallel class supports basic data parallel computations:
– Operation is performed concurrently on elements in a array

– Scheduled on the thread pool and managed by the Task Scheduler

– Blocks until all work is completed

– After an exception, workers are stopped and AggregateException is 

thrown



Schlumberger public

Optimistic concurrency – activity diagram

Data 
Preparation
Copy the data to a 

local buffer

Background computation

Compute
Work item

Compute
Work item

Compute
Work item

Updating 
Petrel & plug-in UI

Progress reporting
Cancellation

Result 
publishing
Update domain

objects

Main thread

Background thread

Thread pool thread



Schlumberger public

Putting it all together
 Data preparation (main thread)

– Copy the Ocean domain object data to a local computation parameter buffer

– Initialize a background worker. Run it asynchronously with the buffer as an argument

 Keep updating Petrel / plug-in UI (main thread)
– Listening to ProgressChanged event and when it is received, update the progress bar

– Call CancelAsync() if user wants to stop the computation

 DoWork event handler (background thread)
– Divide the computation work into an number of small work items and schedule them for 

execution using Parallel.For()

– Block the DoWork handler until all items are processed

– Upon the DoWork completion, the RunWorkerCompleted event will be raised

 Compute work item / Parallel.For body (thread pool thread)
– Check CancellationPending and quit if cancellation was requested

– Perform a part of the computation and report the progress

 RunWorkerCompleted event handler (main thread)
– Check the RunWorkerCompletedEventArgs

– If no errors or cancellation occurred, update the domain object using the computation result



Schlumberger public

Petrel 2014 implementation using Async/Await

 Visual Studio 2012 (.NET 4.5) introduced a 

simplified approach to asynchronous 

programming – Async / Await pattern
• The compiler does the difficult work that the 

developer used to do, and your application retains a 

logical structure that resembles synchronous code.

• As a result, you get all the advantages of 

asynchronous programming with a fraction of the 

effort.



Schlumberger public

Petrel 2014 implementation using Async/Await



Schlumberger public

Petrel 2014 implementation using Async/Await



Schlumberger public

Petrel 2014 implementation using Async/Await

Demo



Schlumberger public

Outstanding issues:

Major Ocean/Petrel multithreading issues 

– Ocean/Petrel does not use locking while 

accessing objects and UI

– No an application-wide deadlock prevention 

strategy

– Minor issues
• To accomodate .NET4.0 Slb.Ocean.Petrel.IProgress needs to support 

System.Threading.CancellationToken

• SetProgressText(String) does not work for NewAsyncProgress



Schlumberger public

References

(1) Pro Asynchronous Programming with .NET, Richard Blewett, 

Andrew Clymer
http://www.amazon.com/dp/B00DREFXNA/

(2) Parallel Processing and Concurrency in the .NET Framework
http://msdn.microsoft.com/en-us/library/hh156548.aspx

(3) Asynchronous Programming with Async and Await 
http://msdn.microsoft.com/en-us/library/vstudio/hh191443.aspx

(4) Async in C# 5.0, Alex Davies
http://www.amazon.com/dp/1449337163/

(5) Threading in C#, Joseph Albahari

http://www.albahari.com/threading/

http://www.amazon.com/Asynchronous-Programming-NET-Richard-Blewett-ebook/dp/B00DREFXNA/
http://msdn.microsoft.com/en-us/library/hh156548.aspx
http://msdn.microsoft.com/en-us/library/vstudio/hh191443.aspx
http://www.amazon.com/Async-C-5-0-Alex-Davies/dp/1449337163/
http://www.albahari.com/threading/

