Parallelizing Ocean plug-in computations using
the Background Worker + PFX pattern

Dmitriy Repin
Program Architect, Schlumberger PTS

Ocean Development Framework User Meeting
Houston, October 24, 2014

PetroTechnical Services | Global Expertise SI:IIIIImllEI'!]EI'

© 2014 Schlumberger. All rights reserved.

An asterisk is used throughout this presentation to denote a mark of
Schlumberger. Other company, product, and service names are the
properties of their respective owners.

PetroTechnical Services

Schiumbergep

Schlumberger public :

User requirements for a Petrel plug-in

m Deliver the result faster
— Do the work in parallel, I've got the cores!

m Stay responsive to user interactions
— Do not freeze the Petrel Ul

— Allow me to do something else (e.g., view the data) while
the computation proceeds

m Report your progress
m Provide a way to cancel the computation, if needed

PetroTechnical Services schlumherger

bl
Schlumberger public

Petrel ecosystem constraints
m Windows Forms / WPF thread affinity

— Controls can only be used on the main application thread.
— Must use ISynchronizelnvoke.Invoke() to access from other thread

m Most of the Ocean API (with small exceptions, e.g., Seismic
and StructuralFramework) does not support asynchronous
access

— (Ocean domain objects must be accessed on the main application
thread

— Petrel does not use locking while accessing objects through Ul
— No application-wide deadlock prevention strategy

N PetroTechnical Services schlumherger

Schlumberger public MEATE AT A ok

Given the limitations, what is possible?

m Live dangerously: Perform parallel computations in the
background without locking the data
— Be ready to crush - user can delete/change inputs at any moment

N Spawn threads / tasks from the main
thread and block it until the computation is complete.

— Good for a short-running operations
— Beware of Application.DoEvents() use for progress reporting!

LY

O
1) Copy the data to a local buffer
2) Perform parallel computations in the background using the buffer
3) Copy the result back, if possible
— Good for long-running operations when the computation is more expensive
than the data/result copy

PetroTechnical Services schlumherger

Schlumberger public —

Our original implementation (before Petrel 2014)

BackgroundWorker + Parallel.For = Usability
m Petrel is alive even with near 100% CPU load

m Provide staged progress reporting
» Step <N> of <L>: <M>% competed

m Provide cooperative cancellation
* |t takes some time to stop computation @

PetroTechnical Services

Schiumbergep

=04
Schlumberger public

Optimistic concurrency — activity diagram

/ Background computation \

Compute : - Main thread

Work item
- Background thread

Compute ‘
Work item e=P Thread pool thread

Compute
Work item

A

4

Progress reporting
Cancellation

0
0
(]
(]
0
(]
(]
\ 4
s a y N
Data Result
Preparation

Updating publishing
Copy the datato a Petrel & plug—in Ul Update domain

local buffer objects
N\ v

I_’_etroTech.nical Services schlumherger

Schlumberger public e

EAP and BackgroundWorker

m Event-based Asynchronous Pattern from Microsoft
Perform an operation asynchronously

Receive a notification when the operation completes
Communicate with the operation using events/delegates

Support for cooperative cancellation and progress reporting

m BackgroundWorker

v [RunWorkerAsync() |Starts execution of a background operation.
’ |DoWork Occurs when RunWorkerAsync is called, will
perform the actual computation
* |RunWorkerCompleted|Occurs when the background operation has completed
or has been canceled
v [CancelAsync() Requests cancellation of a pending background
operation
=]

CancellationPending

Check this value in the DoWork handler. If TRUE, stop
the computation

ReportProgress(Int32)

When called from the DoWork handler, it will rise
ProgressChanged event on the main thread

- |ProgressChanged

Use it to update the Ul

Schlumberger public 2

PetroTechnical Services

Schiumbergep

Simplified example of BackgroundWorker

backgroundWorker.RunWorkerAsync();
backgroundWorker.CancelAsync();

void backgroundWorker_DoWork(object sender, DoWorkEventArgs e) {
BackgroundWorker worker = sender as BackgroundWorker;

for (int i = 1; i < WorkItemCount; i++) {
if (worker.CancellationPending == true) {

e.Cancel = true; break;

} = TODO: Parallelize this

SmoothInline(data, i);
worker.ReportProgress((int) (100.0f*i/WorkItemCount);

} _

}

void backgroundWorker ProgressChanged(object sender, ProgressChangedEventArgs e) {
resultLabel.Text = (e.ProgressPercentage.ToString() + "%");

}

void backgroundWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)

{

if (e.Cancelled == true){ resultLabel.Text = "Canceled!"; }
else if (e.Error I= null){ resultLabel.Text = "Error: " + e.Error.Message; }
else { resultLabel.Text = "Done!“ + e.Result.ToString(); }

PetroTechnical Services schlumhﬂrger

‘ S # G WO L
Schlumberger public

System.Threading.Tasks.Parallel.For

m Parallel Extensions for the .NET Framework (PFX) include

— Parallel LINQ or PLINQ

— The System.Threading.Tasks.Parallel class

— The System.Threading.Tasks.Task parallelism constructs
— The concurrent collections

m Parallel class supports basic data parallel computations:
— Operation is performed concurrently on elements in a array
— Scheduled on the thread pool and managed by the Task Scheduler
— Blocks until all work is completed
— After an exception, workers are stopped and AggregateException is

thrown

System.Threading.Tasks.Parallel.For(®, WorkItemCount,
(itemIndex) => {SmoothInline(data, itemIndex); }

)

PetroTechnical Services schlumherger

Optimistic concurrency — activity diagram

/ Background computation \

Compute : - Main thread

Work item
- Background thread

Compute ‘
Work item e=P Thread pool thread

Compute
Work item

A

4

Progress reporting
Cancellation

0
0
(]
(]
0
(]
(]
\ 4
s a y N
Data Result
Preparation

Updating publishing
Copy the datato a Petrel & plug—in Ul Update domain

local buffer objects
N\ v

I_’_etroTech.nical Services schlumherger

Schlumberger public e

Puttlng it all together

Data preparation (main thread)
— Copy the Ocean domain object data to a local computation parameter buffer
— Initialize a background worker. Run it asynchronously with the buffer as an argument

m Keep updating Petrel / plug-in Ul (main thread)
— Listening to ProgressChanged event and when it is received, update the progress bar
— Call CancelAsync() if user wants to stop the computation

m DoWork event handler (background thread)
— Divide the computation work into an number of small work items and schedule them for
execution using Parallel.For()
— Block the DoWork handler until all items are processed
— Upon the DoWork completion, the RunWorkerCompleted event will be raised

m Compute work item / Parallel.For body (thread pool thread)
— Check CancellationPending and quit if cancellation was requested
— Perform a part of the computation and report the progress

m RunWorkerCompleted event handler (main thread)
— Check the RunWorkerCompletedEventArgs
=] no errors or cancellation occurred update the domain object using the computation result

PetroTechnical Services
ol Exge: Schiumbergep

Schlumbe‘rger public '

Petrel 2014 implementation using Async/Await

m Visual Studio 2012 ((NET 4.5) introduced a
simplified approach to asynchronous

programming — Async / Await pattern
« The compiler does the difficult work that the

developer used to do, and your application retains a
logical structure that resembles synchronous code.

* As aresult, you get all the advantages of
asynchronous programming with a fraction of the
effort.

PetroTechnical Services schlumhﬂrger

‘.‘!‘xﬁm ‘..q.x | ie—li
Schlumberger public

Petrel 2014 implementation using Async/Await

public async void Compute(Func<TData, IProgressReporter, TResult> compute, Func<TData> prepare,
Action<TData, TResult> publish, Action<TData> onCancel, Action<TData, Exception> onException)

{

this.IsExectuting = true;

TData data = default(TData);

try {
this.reporter = Core System.GetService<IProgressService>().Create(this.Name, cancellationToken);
data = prepare();
TResult result = await Task<TResult>.Run(() => compute(data, reporter));
publish(data, result);

}

catch (OperationCanceledException) { onCancel(data); }

catch (Exception ex) { onException(data, ex); }

finally {
this.reporter.Dispose(); this.reporter = nulll
this.IsExectuting = false;

PetroTechnical Services

Schiumbergep

Schlumberger public

Petrel 2014 implementation using Async/Await

Result Compute(Data data, IProgressReporter reporter)
1

reporter ResetProgressCount(data. WorkltemCount);
List<RegularHeightFieldSample> output = new List<RegularHeightFieldSample>();

Parallel.For(0, data.WorkltemCount, new ParallelO ptions(), (int indexl) =>
\

if (reporter = null) reporter. ThrowlfCancellaionRequested();
IEnumerable<RegularHeightFieldSample> partialResult = Smocthinline(data, indexl);
lock (output) { output. AddRange(partialResult); }

reporter ReportProgressincrement();

¥
),

return new Resuit(output);

PetroTechnical Services schlumhﬂrger

Schlumberger public

Petrel 2014 implementation using Async/Await

Demo

Schlumberger public

L= O-ff8 =

Petrel

4 7 [Sufaces K = GHRRI &2 Any
& [Seabed dat
&P [BaseCretaceous dat
& O TopTaert dat
& [TopNess dat
& O TopEtive dat

% |¥| Boundary polygon

% [Copy of Boundary polygon

E&P Software Platform 2014 - [AsyncAwaitDemo]

File Stratigraphy Seismic Interpretation Structural Modeling Property Modeling Fracture Modeling Reservoir Engineering Well Engineering
5 = scree Window - file

s|:i-:s ﬁ ﬁ & Players ~ O Fullscreen | [7] window fl E} % E e = @@

— W Visual filters @ Panes - iﬂ Object ~ = T Managers | B
Perspe Tool Inspector Petrel Studio Studio Import + Autorefresh \sync

- palette :}“ Window layout '@ Reset layout | B Folder = - file L= onfoff | smoother

View Insert Search | Manage data _ransfer_ Natify | Clipboard | Async / Await |
i P Input - 1 X 30 window 1[Any] X Example of implementing a cancellable background parallel computation with \NET 4.5 async/await E 1

Smoothing parameters:
Input surface: |§| BaseCretaceous.dat
Surface dimentions: 238 x 291 nodes
Input polygon: |§| Boundary polygon
Polygon point count: 102 nodes

| Report progress

Smoothing radius: 10

¢ on the main Pertrel thread (locks the Petrel UI)

Run sequentially | Status: Completed = Compute time (ms) 15 10067 55
n the foreground | sccess any domain objects at any time, assuming no progress is reported
Run in parallel Status: Completed Compute time (ms) 12 2705 21
n the foreground | sccess any domain objects at any time, assuming no progress is reported
Use locking to access any shored state used in the parallel computations.
Compute asy! on a background thread (the user continues to use Petrel)
Run sequentially | Status: Completed = Compute time (ms) 7 10495 24

=

in the background | 4y domain object data must be copied to the background task local storage
or locked, if the particular Petrel domain object fype implements support for

iocking (this is uncommon).

2783 21

Status: Completed
All domain object data must be copied to the background task local storage
or locked, if the particular Petrel domain object type implements support for
locking (this s uncommon).

Use locking to access any shared state used in the parallel computations.

Run in parallel Compute time (ms) 22

n the background

Computation progress

Async/await Smoothing 100% (=]
« i v ——
= | Close |
aTask Manager
success) 1wz
sSuccess () 1wz o [% Remove

& Cleanup |

=| Message log ETasks

e

PetroTechnical Services

Schiumbergep

Outstanding issues:

m Major Ocean/Petrel multithreading issues

— Ocean/Petrel does not use locking while
accessing objects and Ul

— No an application-wide deadlock prevention
strategy
— Minor issues

« To accomodate .NET4.0 Slb.Ocean.Petrel.IProgress needs to support
System.Threading.CancellationToken

» SetProgressText(String) does not work for NewAsyncProgress

y PetroTechnical Services schl“mhe"uel‘

Schlumberger public

References

(1) Pro Asynchronous Programming with .NET, Richard Blewett,
Andrew Clymer

(2) Parallel Processing and Concurrency in the .NET Framework
(3) Asynchronous Programming with Async and Await
(4) Asyncin C# 5.0, Alex Davies

(5) Threading in C#, Joseph Albahari

PetroTechnical Services schlumherger

b
Schlumberger public

http://www.amazon.com/Asynchronous-Programming-NET-Richard-Blewett-ebook/dp/B00DREFXNA/
http://msdn.microsoft.com/en-us/library/hh156548.aspx
http://msdn.microsoft.com/en-us/library/vstudio/hh191443.aspx
http://www.amazon.com/Async-C-5-0-Alex-Davies/dp/1449337163/
http://www.albahari.com/threading/

