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User requirements for a Petrel plug-in

m Deliver the result faster
— Do the work in parallel, I've got the cores!

m Stay responsive to user interactions
— Do not freeze the Petrel Ul

— Allow me to do something else (e.g., view the data) while
the computation proceeds

m Report your progress
m Provide a way to cancel the computation, if needed

PetroTechnical Services schlumherger

bl
Schlumberger public



Petrel ecosystem constraints
m Windows Forms / WPF thread affinity

— Controls can only be used on the main application thread.
— Must use ISynchronizelnvoke.Invoke() to access from other thread

m Most of the Ocean API (with small exceptions, e.g., Seismic
and StructuralFramework) does not support asynchronous
access

— (Ocean domain objects must be accessed on the main application
thread

— Petrel does not use locking while accessing objects through Ul
— No application-wide deadlock prevention strategy
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Given the limitations, what is possible?

m Live dangerously: Perform parallel computations in the
background without locking the data
— Be ready to crush - user can delete/change inputs at any moment

N Spawn threads / tasks from the main
thread and block it until the computation is complete.

— Good for a short-running operations
— Beware of Application.DoEvents() use for progress reporting!

LY

O
1) Copy the data to a local buffer
2) Perform parallel computations in the background using the buffer
3) Copy the result back, if possible
— Good for long-running operations when the computation is more expensive
than the data/result copy
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Our original implementation (before Petrel 2014)

BackgroundWorker + Parallel.For = Usability
m Petrel is alive even with near 100% CPU load

m Provide staged progress reporting
» Step <N> of <L>: <M>% competed

m Provide cooperative cancellation
* |t takes some time to stop computation @
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Optimistic concurrency — activity diagram
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EAP and BackgroundWorker

m Event-based Asynchronous Pattern from Microsoft
Perform an operation asynchronously

Receive a notification when the operation completes
Communicate with the operation using events/delegates

Support for cooperative cancellation and progress reporting

m BackgroundWorker

v [RunWorkerAsync()  |Starts execution of a background operation.
’ |DoWork Occurs when RunWorkerAsync is called, will
perform the actual computation
* |RunWorkerCompleted|Occurs when the background operation has completed
or has been canceled
v [CancelAsync() Requests cancellation of a pending background
operation
= ]

CancellationPending

Check this value in the DoWork handler. If TRUE, stop
the computation

ReportProgress(Int32)

When called from the DoWork handler, it will rise
ProgressChanged event on the main thread

- |ProgressChanged

Use it to update the Ul
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Simplified example of BackgroundWorker

backgroundWorker.RunWorkerAsync();
backgroundWorker.CancelAsync();

void backgroundWorker_DoWork(object sender, DoWorkEventArgs e) {
BackgroundWorker worker = sender as BackgroundWorker;

for (int i = 1; i < WorkItemCount; i++) {
if (worker.CancellationPending == true) {

e.Cancel = true; break;

} = TODO: Parallelize this

SmoothInline(data, i);
worker.ReportProgress((int) (100.0f*i/WorkItemCount);

} _

}

void backgroundWorker ProgressChanged(object sender, ProgressChangedEventArgs e) {
resultLabel.Text = (e.ProgressPercentage.ToString() + "%");

}

void backgroundWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)

{

if (e.Cancelled == true){ resultLabel.Text = "Canceled!"; }
else if (e.Error I= null){ resultLabel.Text = "Error: " + e.Error.Message; }
else { resultLabel.Text = "Done!“ + e.Result.ToString(); }
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System.Threading.Tasks.Parallel.For

m Parallel Extensions for the .NET Framework (PFX) include

— Parallel LINQ or PLINQ

— The System.Threading.Tasks.Parallel class

— The System.Threading.Tasks.Task parallelism constructs
— The concurrent collections

m Parallel class supports basic data parallel computations:
— Operation is performed concurrently on elements in a array
— Scheduled on the thread pool and managed by the Task Scheduler
— Blocks until all work is completed
— After an exception, workers are stopped and AggregateException is

thrown

System.Threading.Tasks.Parallel.For(®, WorkItemCount,
(itemIndex) => {SmoothInline(data, itemIndex); }

)
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Optimistic concurrency — activity diagram
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Puttlng it all together

Data preparation (main thread)
— Copy the Ocean domain object data to a local computation parameter buffer
— Initialize a background worker. Run it asynchronously with the buffer as an argument

m Keep updating Petrel / plug-in Ul (main thread)
— Listening to ProgressChanged event and when it is received, update the progress bar
— Call CancelAsync() if user wants to stop the computation

m DoWork event handler (background thread)
— Divide the computation work into an number of small work items and schedule them for
execution using Parallel.For()
— Block the DoWork handler until all items are processed
—  Upon the DoWork completion, the RunWorkerCompleted event will be raised

m Compute work item / Parallel.For body (thread pool thread)
— Check CancellationPending and quit if cancellation was requested
— Perform a part of the computation and report the progress

m RunWorkerCompleted event handler (main thread)
— Check the RunWorkerCompletedEventArgs
=] no errors or cancellation occurred update the domain object using the computation result
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Petrel 2014 implementation using Async/Await

m Visual Studio 2012 ((NET 4.5) introduced a
simplified approach to asynchronous

programming — Async / Await pattern
« The compiler does the difficult work that the

developer used to do, and your application retains a
logical structure that resembles synchronous code.

* As aresult, you get all the advantages of
asynchronous programming with a fraction of the
effort.
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Petrel 2014 implementation using Async/Await

public async void Compute(Func<TData, IProgressReporter, TResult> compute, Func<TData> prepare,
Action<TData, TResult> publish, Action<TData> onCancel, Action<TData, Exception> onException)

{

this.IsExectuting = true;

TData data = default(TData);

try {
this.reporter = Core System.GetService<IProgressService>().Create(this.Name, cancellationToken);
data = prepare();
TResult result = await Task<TResult>.Run(() => compute(data, reporter));
publish(data, result);

}

catch (OperationCanceledException) { onCancel(data); }

catch (Exception ex) { onException(data, ex); }

finally {
this.reporter.Dispose(); this.reporter = nulll
this.IsExectuting = false;
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Petrel 2014 implementation using Async/Await

Result Compute(Data data, IProgressReporter reporter)
1

reporter ResetProgressCount(data. WorkltemCount);
List<RegularHeightFieldSample> output = new List<RegularHeightFieldSample>();

Parallel.For(0, data.WorkltemCount, new ParallelO ptions(), (int indexl) =>
\

if (reporter = null) reporter. ThrowlfCancellaionRequested();
IEnumerable<RegularHeightFieldSample> partialResult = Smocthinline(data, indexl);
lock (output) { output. AddRange(partialResult); }

reporter ReportProgressincrement();

¥
),

return new Resuit(output);
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Petrel 2014 implementation using Async/Await

Demo
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Outstanding issues:

m Major Ocean/Petrel multithreading issues

— Ocean/Petrel does not use locking while
accessing objects and Ul

— No an application-wide deadlock prevention
strategy
— Minor issues

« To accomodate .NET4.0 Slb.Ocean.Petrel.IProgress needs to support
System.Threading.CancellationToken

» SetProgressText(String) does not work for NewAsyncProgress
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